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A four-time correlation function was calculated using a computer simulation of a binary Lennard-Jones
mixture. The information content of the four-time correlation function is similar to that of four-time correlation
functions measured in NMR experiments. The correlation function selects a subensemble and analyzes its
dynamics after some waiting time. The lifetime of the subensemble selected by the four-time correlation
function is calculated, and compared to the lifetimes of slow subensembles selected using two different
definitions of mobility, and to thea relaxation time.
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The origin of the nonexponential relaxation found in su-
percooled liquids has been studied extensively in the past ten
years. Two possibilities exist[1,2]. Either all the particles
undergo nonexponential relaxation(homogeneous scenario),
or the relaxation of each particle is exponential and there is a
large variation in the relaxation time of the particles(hetero-
geneous scenario). There have been many simulations[3–11]
and experiments[12–16] which imply heterogeneous relax-
ation. The heterogeneous relaxation scenario suggests that
the particles in a supercooled liquid can be categorized by
their relaxation time. The particles with the shortest relax-
ation times are referred to as “fast” particles, and the par-
ticles with the longest relaxation times are “slow” particles.
One important question is the lifetime of the dynamic het-
erogeneities, i.e., how long does a fast particle remain fast
and a slow particle remain slow? The first part of this ques-
tion was considered in one of the early simulational investi-
gations of dynamics heterogeneities[3]: the lifetime of fast
particles has been found to be much shorter than thea re-
laxation time. It should be noted that experiments are usually
sensitive to slow particles and thus simulational investigation
of the slow particles lifetime is also important; however, to
the best of our knowledge, lifetime of slow particles has been
studied only in two dimensions where it has been found to be
comparable to thea relaxation time[17]. Here we study the
lifetime of slow particles using an approach inspired by one
of the experimental protocols. Our study is complementary
to recent investigations of the spatial correlations of the slow
particles[10,11].

The lifetime of dynamic heterogeneities has been mea-
sured in a reduced four-dimensional nuclear magnetic reso-
nance(NMR) experiment by monitoring parts of a four-time
correlation function. The general idea of the experiment has
been lucidly explained by Heuer[18]: one can define a fil-
tering function fst1,t2d such thatkfst1,t2dl selects particles
which are slow over a time intervalDt12= t2− t1. Thus,
kfst1,t2dfst3,t4dl selects particles which are slow over time
intervals Dt12 and Dt34= t4− t3. The two time intervals are
separated by a waiting timetw= t3− t2. For smalltw, the re-
laxation of the slow subensemble remains slow, but for large
enoughtw the relaxation of the slow subensemble is the same
as the relaxation of the full ensemble. The lifetime of the
slow ensemble is related to the minimumtw such that the

average relaxation time of the slow subensemble returns to
the average relaxation time of the full ensemble. Böhmeret
al. [12] used this idea to investigate ortho-terphenyl(OTP) at
10 K aboveTg=243 K. Using a pulse sequence they selected
a set of particles which did not rotate appreciably over a time
interval Dt12, i.e., a slow subensemble. The particles were
then allowed to evolve during a time intervaltw. Finally they
measured what fraction of the slow subensemble were still
slow over a time intervalDt34. The characteristic time for the
slow subensemble to remain slow was found to be compa-
rable to the average relaxation time of the full ensemble.
This is in a stark contrast with results obtained for OTP by
Ediger’s group[13,14]: at Tg+4 K the lifetime of the dy-
namic heterogeneities was found to be 6 times longer than
thea relaxation time and atTg+1 K it was 100 times longer.
Ediger’s findings could, however, be compatible with the
NMR result if strong temperature dependence of the lifetime
sets in close toTg.

The procedure used in this work to measure the lifetime
of dynamic heterogeneities is closely related to the NMR
approach described above. We use a four-time correlation
function to select a slow subensemble, and monitor the re-
laxation and the lifetime of the slow subensemble. The four-
time correlation function selects a subensemble without any
explicit definition of mobility, thus it is not clear which par-
ticles are contributing to the four-time correlation function.
To identify these particles we use different definitions of mo-
bility to select subensembles whose relaxation is similar to
the subensemble selected by the four-time correlation func-
tion. Finally, we measure the lifetime of these slow suben-
sembles.

To investigate the lifetime of dynamic heterogeneities we
use the trajectories generated by an extensive Brownian dy-
namics simulation study of a 80:20 mixture of a binary
Lennard-Jones fluid[19]. Briefly, the potential is given by
Vab=4eabfssab / rd12−ssab / rd6g, where a, b[ hA,Bj, and
eAA=1.0, eAB=1.5, eBB=0.5, sAA=1.0, sAB=0.8, andsBB
=0.88. A total ofN=NA+NB=1000 particles were simulated
with a fixed cubic box length of 9.4sAA. All the results are
presented in reduced units wheresAA andeAA are the units of
length and energy, respectively. The system was simulated at
temperaturesT=0.44, 0.45, 0.47, 0.5, 0.55, 0.6, 0.8 and 1.0.
A long equilibration run, and two to eight production runs
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were performed at each temperature. The equilibration run
was at least as long as the production runs. The presented
results are the average of the production runs. The character-
istics of this glass-forming liquid has been extensively stud-
ied [19–21]. The details and the results of the Brownian dy-
namics simulation are given elsewhere[22]. In particular, we
found thata relaxation times, Fig. 2, follow a power-law
temperature dependence in the temperature range 0.47øT
ø0.8 and deviate from this power-law dependence for
T,0.47. This is similar to earlier findings using Newtonian
[19,21] and stochastic dynamics[20].

To examine lifetime of dynamic heterogeneities we follow
the procedure discussed above: we use a filtering function
fst1,t2d=eiq·fr jst2d−r jst1dg, wherer jstd is the position of particle
j at time t. Thus kfst1,t2dl is the incoherent intermediate
scattering functionFssq; t2− t1d. For all the calculations,q is
set to a value around the first peak in theAA sq=7.25d or
BB sq=5.75d partial structure factor forMA and MB, re-
spectively. The four-time correlation function is defined as
follows:

Masq,t1,t2,t3,t4d =
kfst1,t2dfst3,t4dl

kfst1,t2dl

=

K 1

Na

o
j=1

Na

eiq·(r jst2d−r jst1d)eiq·(r jst4d−r jst3d)L
K 1

Na

o
j=1

Na

eiq·(r jst2d−r jst1d)L ,

s1d

wherea[ hA,Bj. The normalization of the correlation func-
tion is such that if t3= t4, then Ma=1.0. For small
tw= t3− t2, the relaxation of the slow subensemble remains
slow, but for large enoughtw the relaxation of the slow sub-
ensemble is the same as the relaxation of the full ensemble.

We fix the first time interval,Dt12= t2− t1, to be equal to
3ta whereta is the a relaxation time[ta is defined by the
usual relationFssq,tad=e−1]. This is comparable to the long-

est time intervalsDt12 used to select a slow subensemble in
the NMR experiment of Böhmeret al. Note that the time
Dt12=3ta is well past the plateau region of the mean squared
displacement, and is longer than what has been used in pre-
vious simulational investigations which examined dynamic
heterogeneities[3,4,9]. The second time interval, the waiting
time tw= t3− t2, is varied. Finally, for a giventw, Masq,tw,td
;Masq,0 ,3ta ,3ta+ tw,t+3ta+ twd is calculated as a func-
tion of time t (i.e., as a function of the last time interval,
Dt34= t4− t3). MAsq,tw,td is shown in Fig. 1 for several wait-
ing times. Notice that if tw=0, then Masq,tw,td
=Fs

asq,3ta+ td /Fs
asq,3tad. Also, Masq,tw,td converges to

Fs
asq,td as the waiting time increases. The lifetime of the

subensemble measures how long it takes for this conver-
gence to occur.

We define the lifetime of dynamic heterogeneities as the
waiting time for which the difference betweenMasq,tw,td
and Fs

asq,td is equal toe−1 of its value at short times. The
exact procedure is as follows: As shown in Fig. 1, fortw.0
there is an initial decay ofMa to a plateau region, thenMa

decays to zero after the plateau. This is in contrast to the
tw=0 case where there is no initial decay to a plateau. Since
we are interested in the relaxation after the plateau,
Masq,0 ,td is multiplied by a temperature dependent factor
CsTd so that CsTdMasq,0 ,tcd=Fs

asq,tcd where tc is at the
beginning of the plateau region ofFs

a. The choice oftc af-
fects the results slightly, with a largertc leading to a some-
what longer lifetime. However, the choice oftc does not
affect any of the conclusions of this work. We calculate

FIG. 2. The characteristic lifetime found using the four-time
correlation function(m), by usingsi [Eq. (3)] to define the mobility
(L), and by usingdi [Eq. (4)] to define the mobility(s), compared
to thea-relaxation time(dashed line).

FIG. 1. Fs
Asq,td (solid line) and MAsq,tw,td (dashed lines) for

tw=0, 5, 50, 250, 500, and 1000 atT=0.45 listed in order from the
longest relaxation time to the shortest relaxation time.(Inset)
HAsq,tw,td /Hmax

A sq,0d for tw=0, 5, 50, 250, 500, and 1000 atT
=0.45.
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Hasq,tw,td = HCsTdMasq,tw,td − Fs
asq,td, tw = 0,

Masq,tw,td − Fs
asq,td, tw . 0

s2d

and determine the lifetime as the waiting time when the peak
value of Hasq,tw,td, is a factor ofe smaller than itstw=0
value, i.e.,Hmax

a sq,tmd /Hmax
a sq,0d=e−1, whereHmax

a sq,twd is
the maximum value ofHasq,tw,td.

Shown in Fig. 2 is the temperature dependence of the
lifetime tm of the slow subensemble selected byMa and for
comparison thea relaxation time. Notice that the lifetime is
not longer than thea relaxation time. The lifetime increases
faster with decreasing temperature than thea relaxation time
except at the lowest temperatures studied where it has the
same temperature dependence as thea relaxation time.

An advantage of a computer simulation is that the trajec-
tories of individual particles can be followed throughout the
simulation. This allows us to try to identify a slow suben-
semble which is a major contribution to the four-time corre-
lation function, i.e., the subensemble selected byfst1,t2d. To
this end we have defined the mobilitysisDtd of a particlei
over a time intervalDt as

sisDtd ; ur istd − r ist1du2, s3d

where the bar denotes an average over timet[ st1,t1+Dtd
[23]. A particle is defined as slow over a time intervalDt if
sisDtd is less than a cutoff valuercut

2 . These are the particles
which stay closest to their position att1 during the whole
time intervalDt.

To make a connection with the four-time correlation func-
tion study we fixDt=3ta. Next, the incoherent intermediate
scattering function,Fslow

a sq,td, is calculated for the slow par-
ticles after a waiting timetw has elapsed.Fslow

A is shown in
Fig. 3 for different values ofrcut

2 , and is compared toFs
A and

MA. Note thatFslow
A andMA are calculated for the same wait-

ing time tw=0.2. For a large cutoffrcut
2 , the subensemble

behaves like the full ensemble. For smaller values ofrcut
2 , the

average relaxation time of the slow particles is longer than
the average relaxation time of the full ensemble. For a small
enough cutoff,Fslow

a sq,td<Masq,tw,td. The size of the cutoff
needed to achieve this equality depends ontw and the time
interval used to identify the slow particles. For the tempera-
ture shown in Fig. 3 Fslow

A sq,td<MAsq,0.2,td for rcut
2

=0.015. This cutoff corresponds to the 0.075% slowest par-
ticles. As tw increases, the value ofrcut

2 resulting in Fslow
a

<Ma also increases. For the higher temperatures, it was not
possible to find a value ofrcut

2 so thatFslow
a <Ma for short

waiting times.
The characteristic lifetime of the slow particlests can be

calculated using the algorithm described above[note that
now we do not need the correction factorCsTd]. The tem-
perature dependence of the characteristic lifetime of the slow
subensemble is shown in Fig. 2. The cutoff was chosen so
that on average the 10% slowest particles were used in the
calculation. The choice of the cutoff has little effect on the
lifetime, as long as a subensemble with a relaxation time
longer than the average relaxation time of the full ensemble
is identified. The lifetime calculated by identifying the slow
particles is always equal to thea relaxation time to within
the uncertainty of the data.

References[3,7] used the following measure of the mo-
bility:

disDtd = ur ist2d − r ist1du2, s4d

whereDt= t2− t1. We defined a slow subensemble as the 10%
with the smallestdis3tad, and calculatedFslow

a for this suben-
semble. Again, the average relaxation time of the suben-
semble was longer than the average relaxation time of the
full ensemble. The lifetime of the subensemble defined using
the second definition of the mobility,td, is equal to thea
relaxation time to within the uncertainty of the data except
for the A particles at the highest temperatures examined in
this work (see Fig. 2).

To try to understand why both definitions give similar
results, it is illustrative to examine the relaxation of different
subsets of particles chosen by the two definitions of mobility.
Let S be the set of particles selected usingsi as the definition
of mobility, andD be the set of particles selected usingdi as
the definition of mobility. Figure 4 comparesFslow

A for SùD,
S−D, and D−S to Fs

A for T=0.55. The relaxation of the
particles which are in setS but notD, or are in setD but not
S, is similar to the relaxation of the full ensemble, but the
particles which are in both sets have a longer relaxation time.
Thus, the two definitions of mobility give similar results
since they both are able to select the particles whose average

FIG. 3. Fs
Asq,td (dashed line), Fslow

A sq,tw,td (dotted lines) for
rcut

2 =0.05, 0.03, 0.025, 0.02, 0.015, 0.014, 0.013 listed from left to
right, andMAsq,tw,td (solid line) for tw=0.2.

FIG. 4. Fslow for different subsets of particles,SùD (dashed
dotted), S−D (dotted), D−S (dashed), compared toFs

A (solid). See
text for definition of setsS andD.
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relaxation time is longer than the average relaxation time of
the full ensemble.

In conclusion, we used a four-time correlation function to
select a slow subensemble and analyze the dynamics of the
slow subensemble. The lifetime of the slow subensemble se-
lected by the four-time correlation function is not longer than
the a relaxation time. On approachingTc the lifetime in-
creases faster with decreasing temperature than thea relax-
ation time[24]. Closer toTc (beginning approximately at the
temperature at which deviations from mode-coupling-like
power laws appear) the lifetime follows the temperature de-
pendence of thea relaxation time. We also identified two
other slow subensembles whose average relaxation time is
longer than the average relaxation time of the full ensemble
using two different definitions of mobility. The essential sub-
ensemble, the subensemble chosen such thatFslow

a <Ma, con-
sists of the particles which stay closest to their position att1
over the time intervalDt= t2− t1, and are still close to their
position att1. This suggests that the slow subensemble are

the particles which are confined to their cage over the time
interval Dt. The lifetime of the slow subensemble depended
on the definition of mobility. Ifsi was used to define mobil-
ity, the lifetime was equal to thea relaxation time at all
temperatures. Ifdi was used as the definition of mobility, the
lifetime was equal to thea relaxation time except for theA
particles at the highest temperature studied, in which case the
lifetime was less than thea relaxation time.

Our findings qualitatively agree with NMR results of
Böhmeret al. [12]. Note, however, that there is a significant
difference in the temperature of simulations and experi-
ments: the simulations have been performed slightly above
Tc whereas the experiments were done well belowTc. Thus,
direct comparison of the two sets of results is impossible.
The same comment applies, however, to almost all simula-
tional studies of glassy dynamics.
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